Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Redressing global patterns of biodiversity loss requires quantitative frameworks that can predict ecosystem collapse and inform restoration strategies. By applying a network-based dynamical approach to synthetic and real-world mutualistic ecosystems, we show that biodiversity recovery following collapse is maximized when extirpated species are reintroduced based solely on their total number of connections in the original interaction network. More complex network-based strategies that prioritize the reintroduction of species that improve ‘higher order’ topological features such as compartmentalization do not provide meaningful performance improvements. These results suggest that it is possible to design nearly optimal restoration strategies that maximize biodiversity recovery for data-poor ecosystems in order to ensure the delivery of critical natural services that fuel economic development, food security, and human health around the globe.more » « less
-
Abstract Climate-mediated changes in thermal stress can destabilize animal populations and promote extinction risk. However, risk assessments often focus on changes in mean temperatures and thus ignore the role of temporal variability or structure. Using Earth System Model projections, we show that significant regional differences in the statistical distribution of temperature will emerge over time and give rise to shifts in the mean, variability and persistence of thermal stress. Integrating these trends into mathematical models that simulate the dynamical and cumulative effects of thermal stress on the performance of 38 globally distributed ectotherm species revealed complex regional changes in population stability over the twenty-first century, with temperate species facing higher risk. Yet despite their idiosyncratic effects on stability, projected temperatures universally increased extinction risk. Overall, these results show that the effects of climate change may be more extensive than previously predicted on the basis of the statistical relationship between biological performance and average temperature.more » « less
-
Abstract Understanding the effects of climate-mediated environmental variation on the distribution of organisms is critically important in an era of global change. We used wavelet analysis to quantify the spatiotemporal (co)variation in daily water temperature for predicting the distribution of cryptic refugia across 16 intertidal sites that were characterized as ‘no’, ‘weak’ or ‘strong’ upwelling and spanned 2000 km of the European Atlantic Coast. Sites experiencing weak upwelling exhibited high synchrony in temperature but low levels of co-variability at monthly to weekly timescales, whereas the opposite was true for sites experiencing strong upwelling. This suggests upwelling generates temporal thermal refugia that can promote organismal performance by both supplying colder water that mitigates thermal stress during hot Summer months and ensuring high levels of fine-scale variation in temperature that reduce the duration of thermal extremes. Additionally, pairwise correlograms based on the Pearson-product moment correlation coefficient and wavelet coherence revealed scale dependent trends in temperature fluctuations across space, with a rapid decay in strong upwelling sites at monthly and weekly timescales. This suggests upwelling also generates spatial thermal refugia that can ‘rescue’ populations from unfavorable conditions at local and regional scales. Overall, this study highlights the importance of identifying cryptic spatiotemporal refugia that emerge from fine-scale environmental variation to map potential patterns of organismal performance in a rapidly changing world.more » « less
-
Climate-mediated changes in the spatiotemporal distribution of thermal stress can destabilize animal populations and promote extinction risk. Using quantile, spectral, and wavelet analyses of temperature projections from the latest generation of earth system models, we show that significant regional differences are expected to arise in the way that temperatures will increase over time. When integrated into empirically-parameterized mathematical models that simulate the dynamical and cumulative effects of thermal stress on the performance of 38 global ectotherm species, the projected spatiotemporal changes in temperature fluctuations are expected to give rise to complex regional changes in population abundance and stability over the course of the 21st century. However, despite their idiosyncratic effects on stability, projected temperatures universally increase extinction risk. These results show that population changes under future climate conditions may be more extensive and complex than the current literature suggests based on the statistical relationship between biological performance and average temperature.more » « less
-
Although the effects of species diversity on food web stability have long been recognized, relatively little is known about the influence of intraspecific diversity. Empirical work has found that intraspecific diversity can increase community resilience and resistance, but few theoretical studies have attempted to use modeling approaches to determine how intraspecific diversity will affect food web stability. To begin to address this knowledge gap, we added intraspecific diversity to May’s classic random food web model. We found that, like species diversity, intraspecific diversity decreased stability. These effects on stability were not simply attributable to changes in interaction strengths, suggesting that intraspecific diversity can have its own independent effects on stability. Its effect depends on the relationship between inter- and intra-genotype interactions; when competition within genotypes was stronger than among them, food webs were generally more stable than when the converse was true. Overall, our model suggests that determining the direction and the magnitude of intraspecific diversity’s effects on stability in natural systems will require more empirical information about how its inclusion alters patterns of interaction strength and food web topology.more » « less
-
Griffen, Blaine D. (Ed.)Ocean acidification (OA) represents a serious challenge to marine ecosystems. Laboratory studies addressing OA indicate broadly negative effects for marine organisms, particularly those relying on calcification processes. Growing evidence also suggests OA combined with other environmental stressors may be even more deleterious. Scaling these laboratory studies to ecological performance in the field, where environmental heterogeneity may mediate responses, is a critical next step toward understanding OA impacts on natural communities. We leveraged an upwelling-driven pH mosaic along the California Current System to deconstruct the relative influences of pH, ocean temperature, and food availability on seasonal growth, condition and shell thickness of the ecologically dominant intertidal mussel Mytilus californianus. In 2011 and 2012, ecological performance of adult mussels from local and commonly sourced populations was measured at 8 rocky intertidal sites between central Oregon and southern California. Sites coincided with a large-scale network of intertidal pH sensors, allowing comparisons among pH and other environmental stressors. Adult California mussel growth and size varied latitudinally among sites and inter-annually, and mean shell thickness index and shell weight growth were reduced with low pH. Surprisingly, shell length growth and the ratio of tissue to shell weight were enhanced, not diminished as expected, by low pH. In contrast, and as expected, shell weight growth and shell thickness were both diminished by low pH, consistent with the idea that OA exposure can compromise shell-dependent defenses against predators or wave forces. We also found that adult mussel shell weight growth and relative tissue mass were negatively associated with increased pH variability. Including local pH conditions with previously documented influences of ocean temperature, food availability, aerial exposure, and origin site enhanced the explanatory power of models describing observed performance differences. Responses of local mussel populations differed from those of a common source population suggesting mussel performance partially depended on genetic or persistent phenotypic differences. In light of prior research showing deleterious effects of low pH on larval mussels, our results suggest a life history transition leading to greater resilience in at least some performance metrics to ocean acidification by adult California mussels. Our data also demonstrate “hot” (more extreme) and “cold” (less extreme) spots in both mussel responses and environmental conditions, a pattern that may enable mitigation approaches in response to future changes in climate.more » « less
-
Abstract Understanding spatiotemporal variation in environmental conditions is important to determine how climate change will impact ecological communities. The spatial and temporal autocorrelation of temperature can have strong impacts on community structure and persistence by increasing the duration and the magnitude of unfavorable conditions in sink populations and disrupting spatial rescue effects by synchronizing spatially segregated populations. Although increases in spatial and temporal autocorrelation of temperature have been documented in historical data, little is known about how climate change will impact these trends. We examined daily air temperature data from 21 General Circulation Models under the business-as-usual carbon emission scenario to quantify patterns of spatial and temporal autocorrelation between 1871 and 2099. Although both spatial and temporal autocorrelation increased over time, there was significant regional variation in the temporal autocorrelation trends. Additionally, we found a consistent breakpoint in the relationship between spatial autocorrelation and time around the year 2030, indicating an acceleration in the rate of increase of the spatial autocorrelation over the second half of the 21stcentury. Overall, our results suggest that ecological populations might experience elevated extinction risk under climate change because increased spatial and temporal autocorrelation of temperature is expected to erode both spatial and temporal refugia.more » « less
-
Abstract Although stability is relatively well understood in macro‐organisms, much less is known about its drivers in host–microbial systems where processes operating at multiple levels of biological organisation jointly regulate the microbiome.We conducted an experiment to examine the microbiome stability of three Caribbean corals (Acropora cervicornis,Pseudodiploria strigosaandPorites astreoides) by placing them in aquaria and exposing them to a pulse perturbation consisting of a large dose of broad‐spectrum antibiotics before transplanting them into the field.We found that coral hosts harboured persistent, species‐specific microbiomes. Stability was generally high but variable across coral species, withA. cervicornismicrobiomes displaying the lowest community turnover in both the non‐perturbed and the perturbed field transplants. Interestingly, the microbiome ofP. astreoideswas stable in the non‐perturbed field transplants, but unstable in the perturbed field transplants.A mathematical model of host–microbial dynamics helped resolve this paradox by showing that when microbiome regulation is driven by host sanctioning, both resistance and resilience to invasion are low and can lead to instability despite the high direct costs bourne by corals. Conversely, when microbiome regulation is mainly associated with microbial processes, both resistance and resilience to invasion are high and promote stability at no direct cost to corals. We suggest that corals that are mainly regulated by microbial processes can be likened to ‘glass cannons’ because the high stability they exhibit in the field is due to their microbiome's potent suppression of invasive microbes. However, these corals are susceptible to destabilisation when exposed to perturbations that target the vulnerable members of their microbiomes who are responsible for mounting such powerful attacks against invasive microbes. The differential patterns of stability exhibited byP. astreoidesacross perturbed and non‐perturbed field transplants suggest it is a ‘glass cannon’ whose microbiome is regulated by microbial processes, whereasA. cervicornis’ consistent patterns of stability suggest that its microbiome is mainly regulated by host‐level processes.Our results show that understanding how processes that operate at multiple levels of biological organisation interact to regulate microbiomes is critical for predicting the effects of environmental perturbations on host–microbial systems.more » « less
-
Abstract Identifying the factors that destabilize communities is critical for predicting and mitigating the ecological impacts of environmental change. Although theory has shown that local ecosystem size and regional dispersal can determine biodiversity, less is known about the direct and indirect effects of these factors on community stability. Here we show that multitrophic community instability of invertebrates and fishes in coastal ponds is negatively related to local pond size and positively related to distance to the ocean, a proxy for dispersal limitation. Importantly, the effects of pond size and distance on instability were direct rather than indirectly mediated by species richness. This suggests that the diversity–stability relationship is an epiphenomenon whose resolution is neither necessary nor sufficient to understand the stability of these multitrophic communities. Instead, well‐established and easily measured local and regional factors historically linked to species richness can be used to predict multitrophic community stability in a variable world.more » « less
An official website of the United States government
